If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9599x^2-1680x+73.5=0
a = 9599; b = -1680; c = +73.5;
Δ = b2-4ac
Δ = -16802-4·9599·73.5
Δ = 294
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{294}=\sqrt{49*6}=\sqrt{49}*\sqrt{6}=7\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1680)-7\sqrt{6}}{2*9599}=\frac{1680-7\sqrt{6}}{19198} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1680)+7\sqrt{6}}{2*9599}=\frac{1680+7\sqrt{6}}{19198} $
| 25+3=j | | 7x+6=7(x+4) | | 3(2m-1)+4=6(m+1) | | y+81y1=0 | | 3x−3=13 | | (D-1)^3(D-2)(D^2-6D+9)y=0 | | y=1081+0.8y | | 14=n-13 | | 12/x=30/75 | | 3x-3(-3x-11)=93 | | 26=x+13 | | 19+x=84 | | x+41/7=5 | | -8y(y+5)-29=43 | | 5y=24-9y | | 25t+6t-7=36 | | 7/j=91 | | 15+n=13 | | 2/8=6/3x | | 532=7(8x+4) | | (2x-7/12)-(4-x/6)=11/20 | | P^2=-7p+8 | | 3.1w-6=7.2+8 | | y=1048+0.9y | | 3.8x-(-9.7x)=2.6+13.3x | | r^2=-2r+24 | | x+40+2x+5=90 | | 3^2+5=7x | | 9u−8u−u+2u+u=1 | | x+2(x-9)=8x+x+2 | | -34=y/7 | | 9u−8u−u+2u+u=12 |